
Notes for the Course �Autonomous Agents and

Multiagent Systems� 2017/2018

Francesco Amigoni

Current address: Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

E-mail address: francesco.amigoni@polimi.it

Last update: November 10, 2017.

CHAPTER 1

Introduction

This document collects some notes that inegrate the content of the textbook
[4] for the course �Autonomous Agents and Multiagent Systems� at the Politecnico
di Milano. It is intended to supply some additional algorithms and concepts (when
possible, retaining the same notation of the textbook). References to the textbook
will be in the form [Chapter x, Section y].

3

CHAPTER 2

Negotiation

[Chapter 4, Section 3]
A protocol more general than the Rubinstein's alternating o�ers protocol, in

the sense that it could be applied to settings with arbitrary set of outcomes O and
with arbitrary utility functions is the monotonic concession protocol.

It assumes:

• An arbitrary set of outcomes O. Each outcome is denoted by x ∈ O.
• Two agents, called a and b, with arbitray utility functions Ua : O → R
and U b : O → R.

• The negotiation proceeds in rounds, according to time steps t = 1, 2,
At each round, both agents simultaneously make an o�er (proposal) and
decide if the other's proposal is accepted or rejected. If at least one agent
accepts, then the agreement is reached, otherwise the negotiation proceeds
to the next round.

Algorithm for monotonic concession is reported as Algorithm 1. The reported
algorithm is for agent a; a similar algorithm can be de�ned for agent b.

A possible strategy in the else statement of line 4 is to select a new x such that
U b(x) = U b(x(a)) + ε, for a given ε, namely to concede a �xed ε to the opponent at
each round.

Some properties of the monotonic concession protocol are:

• The protocol is easily veri�able: both agents can see if rules are obeyed.
• The convergence to an agreement can be slow. Convergence speed depends
on the size of O, on ε, and on the utility functions of the agents.

• Agents should know others' utility functions. This assumption could be
irrealistic.

• If both agents accept at the same round and accepted o�ers x(a) and x(b)

are di�erent, then a tie breaking mechanism is used (e.g., random selection
of an o�er).

A more complex strategy for deciding the amount of concession in line 4 of the
above algorithm is the Zeuthen strategy (Algorithm 2).

Algorithm 1 Monotonic concession

(1) x(a) ← argmaxx∈OU
a(x)

(2) propose o�er x(a)

(3) receive proposed o�er x(b)

(4) if Ua(x(b)) ≥ Ua(x(a)), then accept x(b) and return, else x(a) ← x ∈ O
such that U b(x) ≥ U b(x(a)) (and Ua(x) ≥ 0)

(5) goto 2

4

2. NEGOTIATION 5

Algorithm 2 Zeuthen strategy

(1) x(a) ← argmaxx∈OU
a(x)

(2) propose o�er x(a)

(3) receive proposed o�er x(b)

(4) if Ua(x(b)) ≥ Ua(x(a)), then accept x(b) and return

(5) riska ← Ua(x(a))−Ua(x(b))
Ua(x(a))

(6) riskb ← Ub(x(b))−Ub(x(a))
Ub(x(b))

(7) if riska < riskb, then x(a) ← x ∈ O such that riska > riskb when
considering x instead of x(a) and goto 2

(8) goto 3

Zeuthen strategy terminates with an agreement that is individually rational and
Pareto optimal. Even more, the agreement reached is a Nash bargaining solution.
Also Zeuthen strategy requires the agents to know each other's utility functions but
usually converges much more quickly than basic monotonic concession.

CHAPTER 3

Auctions

An algorithm for solving the winner determination problem in combinatorial
auctions as formulated in [Chapter 7, Section 7] is based on building a tree structure
representing all the possible allocations starting from the sets S of goods for which
a bid has been received, such that each allocation is composed of disjoint sets and
the sets of an allocation contain all the goods in G. The tree is built by using the
following rule: the children of a node are the sets S of goods for which a bid has
been received such that (1) they include the smallest good in G that is not present
along the path from the root to the node and (2) they do not include any good
already present on the path. An example is shown in Figure 3.0.1 for the bids
over goods G = {1, 2, 3, 4, 5} reported in Table 1. Note that, in the table, only the
largest bid v(S) is considered for each S and two �dummy bids� have been added
for single goods {3} and {4} which received no �actual� bids. In the tree, each
path from the root to a leaf is a possibile allocation composed of sets S of goods
(apart from the names of the agents to which the sets S are allocated) and can
be associated to its value g, namely, to the revenue for the auctioneer, calculated
as the sum of v(S) for all S in the allocation. For example, the lestmost path in
Figure 3.0.1 has g = 6+ 2+ 0 = 8, while the rightmost path in the same �gure has
g = 5+ 4+ 0+ 0+ 1 = 10. Solving the winner determination problem comes down
to select the path with the largest value on the tree.

S v(S)

{1} 5
{2} 4
{3} 0
{4} 0
{5} 1
{1, 2} 6
{1, 3, 5} 7
{1, 4} 5
{2, 5} 10
{3, 5} 2

Table 1. An example of received bids.

6

3. AUCTIONS 7

Algorithm 3 Depth-�rst branch-and-bound search algorithm

(1) x∗ ← {}
(2) g∗ ← 0
(3) branch-on-items(1, {})

branch-on-items(j, x)

(1) if sets S in x contain all goods in G
(2) then

(3) if
∑

S∈x v(S) < g∗ then g∗ ←
∑

S∈x v(S) and x∗ ← x endif

(4) return

(5) endif

(6) for sets S such that j ∈ S and S ∩ (∪S′∈xS
′) = {}

(7) x′ ← x+ S
(8) if

∑
S∈x′ v(S) + h(x′) > g∗, then branch-on-items(j′, x′)

(9) endfor

Figure 3.0.1. The tree representing all allocations for the bids of
Table 1 (from [2]).

To e�ciently explore the tree to �nd the best allocation, the depth-�rst branch-
and-bound search algorithm introdcued in [1] and reported as Algorithm 3 can be
used. Global variables x∗ and g∗ represent the current best allocation and its value,
respectively. Heuristic function h(x′) is an upper bound to the value of goods not
yet allocated in x′. A possible heuristic function is

h(x′) =
∑

j∈{goods not allocated in x′}

max
S such that j∈S

v(S)

|S|
.

In line 8, j′ is the smallest good not allocated in x′.

CHAPTER 4

Coalition formation

The distribued algorithm to (hopefully) �nd the best coalition structure by She-
hory and Kraus [3] discussed in [Chapter 8, Section 5.4] is reported as Algorithm4,
which refers to the algorithm executed by a generic agent ai.

Algorithm 4 Shehory and Kraus algorithm

(1) Ci ← set of all coalitions that include agent ai
(2) C∗i ← argmaxC∈Ci

v(C)
|C|

(3) broadcast (ai, C
∗
i), receive other broadcasts, put received (aj , C

∗
j) in C∗

(including (ai, C
∗
i))

(4) Cmax ← largest subset of set of agents A such that, for all aj ∈ Cmax,
(aj , Cmax) ∈ C∗

(5) if ai ∈ Cmax, then join Cmax and return

(6) delete from Ci all coalitions that include agents from Cmax

(7) if Ci is not empty, then goto 2
(8) return

8

Bibliography

[1] Fujishima, Y., Leyton-Brown, K., Shoham, Y., �Taming the Computational Complex-
ity of Combinatorial Auctions: Optimal and Approximate Approaches�, Proceedings
of the International Joint Conference on Arti�cial Intelligence, 1999, p. 548-553.

[2] Sandholm, T., �Optimal Winner Determination Algorithms�, in Cramton, P.,
Shoham, Y., and Steinberg, R. (editors), Combinatorial Auctions, The MIT Press,
2006, p. 337-368.

[3] Shehory, O., Kraus S. �Methods for Task Allocation via Agent Coalition Formation�,
Arti�cial Intelligence, 101(1-2), 1998, p. 165-200.

[4] Weiss, G. (editor), Multiagent Systems (2nd edition), The MIT Press, 2013.

9

