Game Theory, Evolutionary Dynamics, and Multi-Agent Learning

Prof. Nicola Gatti (nicola.gatti@polimi.it)

Game theory

- Players
- Actions
- Outcomes
- Utilities
- Strategies
- Solutions

Player 2

- Players
- Actions
- Outcomes
- Utilities
- Strategies
- Solutions

Player 2

- Players
- Actions
- Outcomes
- Utilities
- Strategies
- Solutions

	Rock	Paper	Scissors
Rock			
Paper			
Scissors			

Player 2

- Players
- Actions
- Outcomes
- Utilities
- Strategies
- Solutions

	Rock	Paper	Scissors
Rock	Tie	Player 2 wins	Player I wins
Paper	Player I wins	Tie	Player 2 wins
Scissors	Player 2 wins	Player I wins	Tie

Player 2

- Players
- Actions
- Outcomes
- Utilities
- Strategies
- Solutions

	Rock	Paper	Scissors
Rock	0,0	- ,	,-
Paper	,-	0,0	- ,
Scissors	- ,	,-	0,0

Player 2

- Players
- Actions
- Outcomes
- Utilities
- Strategies
- Solutions

	Rock	Paper	Scissors	
Rock	0,0	-1,1	,-	$\sigma_1(\mathrm{Rock})$
Paper	,-	0,0	- ,	$\sigma_1(\text{Paper})$
Scissors	- ,	,-	0,0	$\sigma_1(ext{Scissors})$
	$\sigma_2(\mathrm{Rock})$	$\sigma_2(\text{Paper})$	$\sigma_2(\text{Scissors})$	•

Player 2

- Players
- Actions
- Outcomes
- Utilities
- Strategies
- Solutions

Nash Equilibrium

A strategy profile (σ_1^*, σ_2^*) is a Nash equilibrium if and if:

•
$$\sigma_1^* \in \arg\max_{\sigma_1} \left\{ \sigma_1 U_1 \sigma_2^* \right\}$$

•
$$\sigma_2^* \in \arg\max_{\sigma_2} \left\{ \sigma_1^* U_2 \sigma_2 \right\}$$

Evolutionary dynamics

Infinite population of individuals

At each round, each individual of a population plays against each individual of the opponent's population

The average utility is 0

The average utility is 0

A positive (utility - average utility) leads to an increase of the population A negative (utility - average utility) leads to a decrease of the population

New population after the replication

Revision protocol

Question: how the populations change?

Replicator dynamics

$$\dot{\sigma}_1(a,t) = \sigma_1(a,t) \left(e_a U_1 \sigma_2(t) - \sigma_1(t) U_1 \sigma_2(t) \right)$$

Utility given by playing a with a probability of /

Average population utility

Evolutionary Stable Strategies

A strategy is an ESS if it is immune to invasion by mutant strategies, given that the mutants initially occupy a small fraction of population

Every ESS is an asymptotically stable fixed point of the replicator dynamics

Evolutionary Stable Strategies

A strategy is an ESS if it is immune to invasion by mutant strategies, given that the mutants initially occupy a small fraction of population

Every ESS is an asymptotically stable fixed point of the replicator dynamics

While a NE always exists, an ESS may not exist

Player 2

	Cooperate	Defeat
Cooperate	3,3	0,5
Defeat	5,0	۱,۱

Player |

Player 2

	Cooperate	Defeat
Cooperate	3,3	0,5
Defeat	5,0	,

Player

Player 2

		Cooperate	Defeat
-)	Cooperate	3,3	0,5
<u>-</u>	Defeat	5,0	,

Player 2

		Cooperate	Defeat
Player I	Cooperate	3,3	0,5
Pla	Defeat	5,0	I ,I

Player 2

	Stag	Hare
Stag	4,4	1,3
Hare	3,1	3,3

Player

Player 2

Player 2

Matching pennies

Player 2

	Head	Tail
Head	0,1	1,0
Tail	1,0	0, 1

Player

Matching pennies

Player 2

Matching pennies

Matching pennies

Player 2

Multi-agent learning

Markov decision problem

Reinforcement learning

Q-learning (I)

For every pair state/action:

Player I

- I state
- •2 actions (Cooperate, Defeat)

Player 2

		Cooperate	Defeat
- 12/CI -	Cooperate	3,3	0,5
	Defeat	5,0	,

Player I

$$Q(a) \leftarrow Q(a) + \alpha \left(r - Q(a)\right)$$
 $\alpha = 0.2$

$$\sigma_1(a) = \begin{cases} 1.0 & a = \text{Cooperate} \\ 0.0 & a = \text{Defeat} \end{cases}$$

$$\sigma_1(a) = \begin{cases} 0.2 & a = \text{Cooperate} \\ 0.8 & a = \text{Defeat} \end{cases}$$

		Cooperate	Defeat
Player I	Cooperate	3,3	0,5
	Defeat	5,0	۱,۱

$$Q(a) \leftarrow Q(a) + \alpha \left(r - Q(a)\right)$$
 $\alpha = 0.2$

round	Player 2's action	Player 1's Q	function
-------	-------------------	----------------	----------

t = 0		Q(Cooperate) = 0
t = 1	a = Cooperate	Q(Cooperate) = 0.6
t = 2	a = Defeat	Q(Cooperate) = 0.48
t = 3	a = Defeat	Q(Cooperate) = 0.384
t = 4	a = Defeat	Q(Cooperate) = 0.3072
t = 5	a = Defeat	Q(Cooperate) = 0.24576
t = 6	a = Cooperate	Q(Cooperate) = 0.496608

$$\sigma_1(a) = \begin{cases} 1.0 & a = \text{Cooperate} \\ 0.0 & a = \text{Defeat} \end{cases}$$

$$\sigma_1(a) = \begin{cases} 0.2 & a = \text{Cooperate} \\ 0.8 & a = \text{Defeat} \end{cases}$$

Player 2

	Cooperate	Defeat
Cooperate	3,3	0,5
Defeat	5,0	۱,۱

Player |

$$Q(a) \leftarrow Q(a) + \alpha \left(r - Q(a)\right)$$
 $\alpha = 0.2$

round	Player 2's action	Player 1's Q function
t = 0		Q(Cooperate) = 0
t = 1	a = Cooperate	Q(Cooperate) = 0.6
t = 2	a = Defeat	Q(Cooperate) = 0.48
t = 3	a = Defeat	Q(Cooperate) = 0.384
t = 4	a = Defeat	Q(Cooperate) = 0.3072
t = 5	a = Defeat	Q(Cooperate) = 0.24576
t = 6	a = Cooperate	Q(Cooperate) = 0.496608

$$\sigma_1(a) = \begin{cases} 1.0 & a = \text{Cooperate} \\ 0.0 & a = \text{Defeat} \end{cases}$$

$$\sigma_1(a) = \begin{cases} 0.2 & a = \text{Cooperate} \\ 0.8 & a = \text{Defeat} \end{cases}$$

Player 2

	Cooperate	Defeat
Cooperate	3,3	0,5
Defeat	5,0	,

$$Q(a) \leftarrow Q(a) + \alpha \left(r - Q(a)\right)$$
 $\alpha = 0.2$

round	Player 2's action	Player 1's Q function
t = 0		Q(Cooperate) = 0
t = 1	a = Cooperate	Q(Cooperate) = 0.6
t=2	a = Defeat	Q(Cooperate) = 0.48
t = 3	a = Defeat	Q(Cooperate) = 0.384
t = 4	a = Defeat	Q(Cooperate) = 0.3072
t = 5	a = Defeat	Q(Cooperate) = 0.24576
t = 6	a = Cooperate	Q(Cooperate) = 0.496608

$$\sigma_1(a) = \begin{cases} 1.0 & a = \text{Cooperate} \\ 0.0 & a = \text{Defeat} \end{cases}$$

$$\sigma_1(a) = \begin{cases} 0.2 & a = \text{Cooperate} \\ 0.8 & a = \text{Defeat} \end{cases}$$

Player 2

	Cooperate	Defeat
Cooperate	3,3	0,5
Defeat	5,0	۱,۱

Player |

$$Q(a) \leftarrow Q(a) + \alpha \left(r - Q(a)\right)$$
 $\alpha = 0.2$

round	Player 2's action	Player 1's Q function
t = 0		Q(Cooperate) = 0
t = 1	a = Cooperate	Q(Cooperate) = 0.6
t = 2	a = Defeat	Q(Cooperate) = 0.48
t=3	a = Defeat	Q(Cooperate) = 0.384
t = 4	a = Defeat	Q(Cooperate) = 0.3072
t = 5	a = Defeat	Q(Cooperate) = 0.24576
t = 6	a = Cooperate	Q(Cooperate) = 0.496608

$$\sigma_1(a) = \begin{cases} 1.0 & a = \text{Cooperate} \\ 0.0 & a = \text{Defeat} \end{cases}$$

$$\sigma_1(a) = \begin{cases} 0.2 & a = \text{Cooperate} \\ 0.8 & a = \text{Defeat} \end{cases}$$

Player 2

	Cooperate	Defeat
Cooperate	3,3	0,5
Defeat	5,0	۱,۱

$$Q(a) \leftarrow Q(a) + \alpha \left(r - Q(a)\right)$$
 $\alpha = 0.2$

round	Player 2's action	Player 1's Q function
t = 0		Q(Cooperate) = 0
t = 1	a = Cooperate	Q(Cooperate) = 0.6
t = 2	a = Defeat	Q(Cooperate) = 0.48
t = 3	a = Defeat	Q(Cooperate) = 0.384
t = 4	a = Defeat	Q(Cooperate) = 0.3072
t = 5	a = Defeat	Q(Cooperate) = 0.24576
t = 6	a = Cooperate	Q(Cooperate) = 0.496608

$$\sigma_1(a) = \begin{cases} 1.0 & a = \text{Cooperate} \\ 0.0 & a = \text{Defeat} \end{cases}$$

$$\sigma_1(a) = \begin{cases} 0.2 & a = \text{Cooperate} \\ 0.8 & a = \text{Defeat} \end{cases}$$

Player 2

	Cooperate	Defeat
Cooperate	3,3	0,5
Defeat	5,0	۱,۱

$$Q(a) \leftarrow Q(a) + \alpha \left(r - Q(a)\right)$$
 $\alpha = 0.2$

round	Player 2's action	Player 1's Q function
t = 0		Q(Cooperate) = 0
t = 1	a = Cooperate	Q(Cooperate) = 0.6
t = 2	a = Defeat	Q(Cooperate) = 0.48
t = 3	a = Defeat	Q(Cooperate) = 0.384
t = 4	a = Defeat	Q(Cooperate) = 0.3072
t=5	a = Defeat	Q(Cooperate) = 0.24576
t = 6	a = Cooperate	Q(Cooperate) = 0.496608

$$\sigma_1(a) = \begin{cases} 1.0 & a = \text{Cooperate} \\ 0.0 & a = \text{Defeat} \end{cases}$$

$$\sigma_1(a) = \begin{cases} 0.2 & a = \text{Cooperate} \\ 0.8 & a = \text{Defeat} \end{cases}$$

Player 2

	Cooperate	Defeat
Cooperate	3,3	0,5
Defeat	5,0	,

$$Q(a) \leftarrow Q(a) + \alpha \left(r - Q(a)\right)$$
 $\alpha = 0.2$

round	Player 2's action	Player 1's Q function
t = 0		Q(Cooperate) = 0
t = 1	a = Cooperate	Q(Cooperate) = 0.6
t = 2	a = Defeat	Q(Cooperate) = 0.48
t = 3	a = Defeat	Q(Cooperate) = 0.384
t = 4	a = Defeat	Q(Cooperate) = 0.3072
t = 5	a = Defeat	Q(Cooperate) = 0.24576
t = 6	a = Cooperate	Q(Cooperate) = 0.496608

$$\sigma_1(a) = \begin{cases} 1.0 & a = \text{Cooperate} \\ 0.0 & a = \text{Defeat} \end{cases}$$

$$\sigma_1(a) = \begin{cases} 0.2 & a = \text{Cooperate} \\ 0.8 & a = \text{Defeat} \end{cases}$$

Player 2

	Cooperate	Defeat
Cooperate	3,3	0,5
Defeat	5,0	,

Q-learning (2)

Softmax (a.k.a. Boltzam exploration)

$$\sigma_i(a) = \frac{\exp(Q(s, a)/\tau)}{\sum_{a'} \exp(Q(s, a')/\tau)}$$

Q-learning (2)

Softmax (a.k.a. Boltzam exploration)

Q-learning (2)

Softmax (a.k.a. Boltzam exploration)

$$\sigma_i(a) = \frac{\exp(Q(s, a)/\tau)}{\sum_{a'} \exp(Q(s, a')/\tau)}$$
temperature

Every action is played with strictly positive probability

The larger the temperature, the smoother the function

If the temperature is 0, we would have a best response

Q(Cooperate)	Q(Defeat)	$\sigma_1(\text{Cooperate})$	$\sigma_1(\text{Cooperate})$
0	0	0.5	0.5
1	0	0.731	0.269
5	0	0.99331	0.00669
10	0	0.999955	0.000045

Q(Cooperate)	Q(Defeat)	$\sigma_1(\text{Cooperate})$	$\sigma_1(\text{Cooperate})$
0	0	0.5	0.5
1	0	0.731	0.269
5	0	0.99331	0.00669
10	0	0.999955	0.000045

Q(Cooperate)	Q(Defeat)	$\sigma_1(\text{Cooperate})$	$\sigma_1(\text{Cooperate})$
0	0	0.5	0.5
1	0	0.731	0.269
5	0	0.99331	0.00669
10	0	0.999955	0.000045

Q(Cooperate)	Q(Defeat)	$\sigma_1(\text{Cooperate})$	$\sigma_1(\text{Cooperate})$
0	0	0.5	0.5
1	0	0.731	0.269
5	0	0.99331	0.00669
10	0	0.999955	0.000045

Self-play Q-learning dynamics

Self-play learning

Q-learning algorithm

Player 2

	Cooperate	Defeat
Cooperate	3,3	0,5
Defeat	5,0	1,1

Q-learning algorithm

Player I

Assumptions:

- •Time is continuous
- All the actions can be selected simultaneously

Assumptions:

- Time is continuous
- All the actions can be selected simultaneously

$$\dot{\sigma}_1(a,t) = \frac{\alpha \,\sigma_1(a,t)}{\tau} \left(e_a U_1 \sigma_2(t) - \sigma_1(t) U_1 \sigma_2(t) \right) - \alpha \,\sigma_1(a,t) \left(\log(\sigma_1(a)) - \sum_{a'} \sigma_1(a') \,\log(\sigma_1(a')) \right)$$

Assumptions:

- •Time is continuous
- All the actions can be selected simultaneously

$$\dot{\sigma}_1(a,t) = \frac{\alpha \, \sigma_1(a,t)}{\tau} \underbrace{\left(e_a U_1 \sigma_2(t) - \sigma_1(t) U_1 \sigma_2(t)\right)}_{\tau} - \alpha \, \sigma_1(a,t) \underbrace{\left(\log(\sigma_1(a)) - \sum_{a'} \sigma_1(a') \, \log(\sigma_1(a'))\right)}_{r}$$
 exploitation term

Assumptions:

- Time is continuous
- All the actions can be selected simultaneously

$$\dot{\sigma}_1(a,t) = \frac{\alpha \, \sigma_1(a,t)}{\tau} \underbrace{\left(e_a U_1 \sigma_2(t) - \sigma_1(t) U_1 \sigma_2(t)\right)}_{\tau} - \alpha \, \sigma_1(a,t) \underbrace{\left(\log(\sigma_1(a)) - \sum_{a'} \sigma_1(a') \, \log(\sigma_1(a'))\right)}_{\tau}$$
 exploitation term

When the temperature is 0, the Q-learning behaves as the replicator dynamics

Prisoner's dilemma

Player 2

		Cooperate	Defeat
Player I	Cooperate	3,3	0,5
Pla)	Defeat	5,0	I ,I

Stag hunt

Matching pennies

Player 2

