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A strategy profile          is a Nash equilibrium if and if:
• 
• 
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Revision protocol

Question: how the populations change?

Replicator dynamics
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Figure 4: The replicator dynamics, plotted in the unit simplex, for the prisoner’s dilemma
(left), the stag hunt (center), and matching pennies (right).

To illustrate the dynamics of Equation 6, we analyse the three games presented in Figure 3.
Since a player’s strategy over two actions is fully defined by the probability of the first action
(as x

2

= 1�x
1

), we can plot the strategy space of these games as the two-dimensional unit
simplex over the tuple (x

1

, y
1

). Plugging the payo↵ matrix of each game into the replicator
dynamics of Equation 6, we find the direction and relative speed of change for each point
in the unit simplex. The resulting vector fields for the three games are shown in Figure 4.

Figure 4 shows that the players in the prisoner’s dilemma are drawn to the (D,D)
equilibrium, which is both a NE and an ESS. In the stag hunt, both pure NE, (S, S) and
(H,H), are also ESS, but the mixed NE is not. It is a fixed point, but not asymptotically
stable. Finally, the matching pennies game has a single mixed NE at (1

2

, 1
2

), where both
players randomise uniformly over their actions. However, this again is not an ESS; instead
all trajectories cycle around this fixed point.

3. Relating Reinforcement Learning and Replicator Dynamics

Recent research analysing the dynamics of multi-agent learning builds on seminal work
by Börgers and Sarin (1997), who first proved the formal relation between the replicator
dynamics of evolutionary game theory and reinforcement learning. In this section, we will
first summarise their proof. Next, we present a categorisation of recent work, based on the
nature of the environment and actions available to the agents.

3.1 Replicator Dynamics as the Continuous Time Limit of Cross Learning

Multi-agent learning and evolutionary game theory share a substantial part of their foun-
dation, in that they both deal with the decision making processes of boundedly rational
agents, or players, in uncertain environments. The link between these two fields is not only
an intuitive one, but was made formal with the proof that the continuous time limit of
Cross learning converges to the replicator dynamics (Börgers & Sarin, 1997).
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first summarise their proof. Next, we present a categorisation of recent work, based on the
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Reinforcement learning



Q-learning (1)

learning rate reward discount factor

For every pair state/action:

Q(s, a) Q(s, a) + ↵
h
r + �maxa0 Q(s, a0)�Q(s, a)

i
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Q-learning (2)

Softmax (a.k.a. Boltzam exploration)

�i(a) =
exp(Q(s, a)/⌧)P
a0 exp(Q(s, a0)/⌧)

temperature

Every action is played with strictly positive probability

The larger the temperature, the smoother the function

If the temperature is 0, we would have a best response
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10 0 0.999955 0.000045
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Self-play Q-learning dynamics
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Learning dynamics
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exploitation term exploration term

Assumptions:
•Time is continuous
•All the actions can be selected simultaneously

When the temperature is 0, the Q-learning behaves 
as the replicator dynamics
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Figure 6: Policy traces of FAQ and LFAQ, plotted in the unit simplex and overlaid on
their respective dynamical model, for the prisoner’s dilemma (left), the stag hunt (center),
and matching pennies (right) (Bloembergen et al., 2011).
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