Politecnico di Milano Artificial Intelligence

Artificial Intelligence What and When

Viola Schiaffonati viola.schiaffonati@polimi.it

What is artificial intelligence?

When has been AI created?

Are there problems?

- The problem of the **definition**
 - What is the "correct" definition?
- The problem of the **origin**
 - Precursors
 - Long research tradition
- Artificial Intelligence: 1956-today

The definition problem

- Lack of a unique and universally accepted definition
- Several and different definitions
- Definitions organized according to two dimensions
 - Thought processes vs. behaviors
 - Human performances vs. rational performances

Artificial Intelligence: definitions

Systems that think	Systems that think
like humans	rationally
Systems that act	Systems that act
like humans	rationally

Thinking humanly

The cognitive modeling approach

- Intelligence: how humans think
- Introspection or psychological experiments to determine human cognitive processes
- Psychological tradition (cognitive science)
- GPS (A. Newell, H. Simon)
 - Human processes simulation

Acting humanly

- The conventional approach
 - Intelligence: realization of a determined performance (previously defined)
- Turing test (1950)
 - Operational definition
 - of intelligence

- Extension of the notion of intelligence
 - Not just to think, but also to act

Thinking rationally

- The "laws of thought" approach
 - Intelligence: ability to think "in the right way"
- **Rationality** as an ideal concept of intelligence
 - Intelligence without errors
 - Exact definition of rationality
- Logical tradition
 - Programs able to solve any solvable problem described in logical notation

Acting rationally

- The rational agent approach
 - Intelligence: acting to achieve the best possible outcome
- Rational agent
 - Physical system operating in an environment
- Limited rationality
 - Acting **appropriately** (even with short time and insufficient information)

Artificial Intelligence

- **Conventional** definition of intelligence
- Constant extension of its boundaries (depending on scientific and technological achievements)
- Science **and** engineering
 - Understanding intelligence
 - Building intelligence

The problem of the origin

- Official date of birth (1956)
- Role of **precursors**
 - Computer engineering
 - Cybernetics
- Research tradition
 - Tendency of humans to represent themselves
 - Formalistic tradition of enquiry on the mind

Research tradition: the ancient world

- Heron of Alexandria (150 AD)
 - Semiautomatic machines (autòmatha): water-

powered and steam-powered

Research tradition: the ancient and medieval world

- Ramon Lull (1235-1315)
 - Ars Magna: general
 principles of human
 knowledge represented
 by numbers and
 symbols composed to
 obtain further knowledge
 - Ars inveniendi veritatem

Research tradition: the scientific revolution

- Descartes (1596-1650)
 - Rational actions and mechanical actions
- La Mettrie (1709-1751)
 - L'Homme Machine
- Pascal (1623-1662)
 - Mechanical calculator
- Leibniz (1646-1716)
 - Project of mechanizing rationality (calculus ratiocinator)
 - Axiomatic-deductive system

Research tradition: Charles Babbage (1791-1871)

- Numerical tables for calculation
- Difference Engine
 - Automatic calculation of logarithmic tables
- Analytical Machine
 - Memory warehouse
 - Control system

Research tradition: the birth of modern logic

- Boole (1854): algebrization of logic
 - Laws constituting the `mathematics' of human cognition
- Frege
 - Formal system (first order logic),

notion of proof

Research tradition: Alan Turing (1912-1954)

- Computability theory
 - Universal machine
 - Capable of expressing any definite procedure by a finite number of actions
 - Algorithm
 - Sequence of operations that can be performed by the universal machine

The precursors

- Computer engineering
 - Z3, Eniac
- Cybernetics

- Study of the communication and control of regulatory feedback both in living beings and machines
- McCulloch, Pitts (1943)
 - First model of artificial neurons

The birth of Artificial Intelligence

- Workshop at Dartmouth (summer 1956)
- J. McCarthy, M. Minsky, C. Shannon, N. Rochester

"The study is to proceed on the basis of the conjecture that every aspect of **learning** or any other feature of **intelligence** can in principle be so precisely **described** that a machine can be made to **simulate** it." (McCarthy 1955)

Great expectations (1956-1969)

- General search strategies (applications to games)
 - GPS (Simon, Newell)
- Progressively **restricted** notion of **intelligence**
 - Microworlds (Minsky)
- *Lisp* (McCarthy)
- Temporal decline of neural network models

First problems (1966-1973)

- More complex problems
- Intractability of many problems
 - No theory of computational complexity
- Crisis in the field of machine translations
 - Cancellation of government funding
 - Extension of the crisis to the whole field

Knowledge-based systems (1969-1979)

- Narrow areas of expertise
- Expert systems
 - Centrality of domain knowledge and its adequate description
 - Systems supporting human experts
- Natural language processing
 - Syntax + semantics

AI becoming an industry (1980today)

- **Commercial** expert systems
- Chip design
- Human-computer interfaces

The revival of neural networks (1986-today)

- **Back-propagation learning algorithm** reinvented by four different research groups
- Connectionist models of intelligent systems

AI becoming a science (1987-today)

- Revolution in content and methods
 - Experiments
 - Rigorous theorems
- Probabilistic approach
 - Bayesian networks: efficient representation and rigorous reasoning with uncertain knowledge

The emergence of intelligent agents (1995-today)

- From a **single** agent: "whole agent" problem
 - Robotics, artificial vision, learning
- To groups of agents: systems of interacting agents (MAS)
 - Positive interaction: cooperation
 - Negative interaction: competition

Rational agent

- Rationality: reasons to act
 - Economic tradition: utility function
 - Qualitative rationality: beliefs, desires, intentions
- Autonomy: relatively to other agents
- Adaptability: individual learning

References

- Davies, M. (2012) The Universal Computer: The Road from Leibniz to Turing, Taylor & Francis Group
- McCorduck, P. (1979) *Machines Who Think*, A K Peters, Ltd.
- Russell, S., Norvig, P. (2009) *Artificial Intelligence: A Modern Approach*, Prentice Hall