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Abstract. This paper introduces the main features of the PoAReT (Po-
litecnico di Milano Autonomous Robotic Rescue Team) system for the
Virtual Robot competition of the Rescue Simulation League at RoboCup
2012.

1 Introduction

This paper summarizes the main features of the PoAReT (Politecnico di Milano
Autonomous Robotic Rescue Team) team for the Virtual Robot competition of
the Rescue Simulation League at RoboCup 2012. The system is developed by
six MSc students in Computer Engineering at the Politecnico di Milano. Further
information about the team, including a link to the source code and the list of
members with their roles is available at http://home.dei.polimi.it/amigoni/
research/PoAReT.html.

In developing PoAReT, we push along the autonomy axis, attempting to
equip the robotic system with methods that enable its autonomous operation for
extended periods. At the same time, the role of human operator is not neglected,
but is empowered by the autonomous features of the system.

Besides the base station, our PoAReT system is composed of P3AT mobile
platforms, equipped with laser range finders (with a 360◦ horizontal field of
view around each robot, possibly obtained with two laser range finders) and
with a camera. Laser range finders are used to build a geometrical map of the
environment that is represented with two sets of line segments. The first set
contains the line segments that represent (the edges of) perceived obstacles. The
second set contains the line segments that represent the frontiers, namely the
boundaries between the known and the unknown portions of the environment.

The main cycle of activities of the PoAReT system is: (a) building a geo-
metrical map of the environment composed of line segments, (b) selecting the
most convenient frontiers to reach, and (c) coordinating the allocation of robots
to the frontiers. A distinguishing feature of our system is that it (d) maintains
a semantic map of the environment that labels areas of the geometrical map
with human-like names, like ‘room’ or ‘corridor’. At the same time, the system
performs (f) the detection of victims on the basis of the images returned by
the onboard cameras and (g) the interaction with the human operator via the
user interface. Exploiting semantic maps, the PoAReT system is expected to



exhibit a high level of autonomy in selecting the interesting frontiers to reach
and in allocating them to available robots. Also the interaction with the user
could be improved by availability of semantic maps, enabling the interpretation
of human-level commands like “always send two robots along corridors”.

In the following of this paper, we first describe the overall architecture of the
PoAReT system and then the individual modules that perform activities (a)-(g).

2 Overview of the PoAReT System

The architecture of our system is organized in two different types of processes,
one related to the base station and one related to the mobile robots, to have a
clear separation between their functionalities.

The base station embeds the user interface module. It displays data to the
user and accepts commands from the user to control the spawned robots. The
base station process can spawn new robots in USARSim: for each robot, a new in-
dependent process is created and started. The processes of the base station and
of the robots communicate only through WSS and do not share any memory
space, as required by the rules for the competition. A distance vector routing
protocol [1] is implemented to deliver messages. This protocol calculates the
routing tables for every robot in a dynamic and distributed way, considering the
performance of a connection in terms of the number of hops for the messages.
Messages can be delivered either in a non-reliable or in a reliable way, used
for critical information and implemented with the usage of message queues. Al-
though in principle there is no need to maintain a direct connection between
robots and base station (robots explore autonomously and, when connection is
re-established, they can report to the base station and share collected infor-
mation with other robots), the routing protocol maintains indirect connectivity
between robots and base station in order to extend the operative range of the
human operator.

The robot process is structured in seven different modules, each one related
to a high-level functionality: motion control, path planning, SLAM, semantic
mapping, victim detection, exploration, and coordination. Almost all of these
modules are threads that communicate through a queue system. The main of
the above modules are described in the following sections. Here, we briefly discuss
the motion control module, which is straightforward, given the locomotion model
of P3AT, and the path planning module. Path planning can be invoked in three
cases: to reach a position with a path that lies entirely in the known space
(usually, the position is a frontier between known and unknown space), to reach
a position with a path that traverses unknown parts of the environment, and to
cover a known portion of the environment (e.g., a room) to search victims. The
algorithms we use are A* in a graph whose vertices are the past poses of the
robot and edges are the elementary (visibility) paths between them, RRT [2],
and one of the algorithms for coverage [3], respectively.

Fig. 1 shows the PoAReT system architecture. The base station module is
in green, while the mobile robot modules are in yellow.



Fig. 1. PoAReT system architecture

3 SLAM

In our team, the simultaneous localization and mapping (SLAM) problem is
tackled by adopting a feature-based method similar to that described in [4]. Dif-
ferently of that approach, however, our system is based on the FastSLAM 2.0
paradigm [5] rather than on EKF, in order to get some important advantages,
including: multiple data association, lower asymptotic time complexity, and full
robots’ path posterior (past poses are used for navigation when backtracking).
From the other hand, FastSLAM has known problems with loop closures. How-
ever, these can be mostly ignored in search and rescue applications where the
robots are not likely to pass through the same location more times.

The map is represented as a set of line segments that are extracted (using
the split and merge algorithm [6]) from laser range scans received as input,
together with odometric information about the poses where the scans have been
taken. Line segments are thus treated as the features for the probabilistic filter.
Use of line segments instead of more common grids provides a more compact
representation of the environment that can be easily communicated to the base
station.

The measurement step associates the line segments of a scan to the the linear
features in the map (with respect to distance measures, such as those described
in [7] or [8]) and executes an Iterative Closest Line (ICL) algorithm (like [8])
with constraints on the maximum rotation and on the maximum translation to
provide a per-particle measure, which is then integrated in the particle filter. All
the line segments of a scan are added to the filter; periodically a test is carried
out to determine whether there is enough evidence to support the hypothesis of
two previously associated line segments being in fact the same; if so, they are
merged. The other steps of the FastSLAM procedure are straightforward.

Besides a line segment-based representation of the map, the SLAM module
keeps also track of all the robots’ poses, past and current, of the victims’ locations



(distance measurements to the victims are confirmed by the human operator),
and of the line segments that constitute frontiers between known and unknown
space (which are used by the exploration module).

4 Semantic Mapping

The semantic mapping module performs a semantic classification of places and
works in parallel with the SLAM module with the aim of improving performance
of the exploration and coordination modules. This module takes as input the line
segment map of a discovered indoor environment (updated by the SLAM mod-
ule) and tries to extract more information than the basic geometrical features,
exploiting prior knowledge on the typical structure of buildings. Our approach
extends that presented in [9] and [10] to line segment maps.

Firstly, the mapped area is divided into single rooms, identifying the area
that belongs to each room and the doorways that divide the rooms. This is
done applying an AdaBoost classifier to the scan provided by the laser sensor.
As a result of this step, the parts of the environment are classified into two
basic categories: room and doorway. With this information, the space portion
marked as room is divided into different parts representing every single room
separately. Later, each room is classified according to its own characteristic. A
simple classification can label a room as a small room, a large room, or a corridor,
while a more complex one, based on features of the room itself, could describe the
function of the room as a bathroom or an office. The corridor and the hallway
concepts, although very simple to understand for a human being, can be very
important in a robotic rescue environment, because corridors and hallways can
be explored first, leading the robots to discover many other rooms in a short
amount of time.

The semantic map is represented as a graph, derived from the geometrical
map, and is exploited by the exploration and coordination modules. For example,
these modules can estimate from the semantic map how much time and effort
are required to explore a portion of the environment, according to the presence
of corridors and rooms. The semantic map is also used by the user interface
module to give to the user an immediate and intuitive feedback on the behavior
of the robots in the environment.

5 Exploration

The exploration module selects new frontiers to explore, in order to discover
the largest possible amount of the environment within the time allowed in the
competition. This module obtains from the SLAM and the semantic mapping
modules the geometrical and the semantic maps, respectively. Then, it evaluates
the frontiers by assigning them utilities and, finally, calls the coordination module
to find an allocation of robots to the frontiers. The module also exposes a function
that can be called by the coordination module and that evaluates a given set of
frontiers from the point of view of a robot.



In the exploration module, we employ an exploration strategy that tries to
take advantage from the geometrical and semantic information gathered by the
robots. We take inspiration from [11], where the authors achieve a good explo-
ration performance by distinguishing if the robot is in a hallway or in a room.
In our system, we integrate this semantic information into a framework, called
Multi-Criteria Decision-Making (MCDM), that is described in [12]. MCDM is a
flexible decision-theoretical approach: we can add or remove criteria and we can
also modify the criteria weights at runtime.

Specifically, to calculate the utility of a frontier f for a robot r, we use the
following criteria (similar to those used in [13]): the distance of r from f , the
expected information gain at f (an estimate of how much new area r will perceive
when at f), the probability of keeping the communication between r and another
robot when r will be in f , and the battery level for r. Furthermore, we weight
the utility of f with respect to the semantic information associated to f . For
example, if f leads to a corridor, its utility will be increased.

6 Coordination

The coordination module is responsible of allocating tasks to the robots. As most
of the other modules it is a thread. However, differently from other modules, it
is only called whenever it becomes necessary to allocate tasks among robots.
The mechanism we use to allocate tasks is market-based and sets up auctions in
which tasks are auctioned to robots [14]. Auctions provide a well-known mean
to bypass problems like unreliable wireless connections or robot malfunctions.

We consider three different tasks.

– Reach frontiers. As explained in the previous section, robots must explore
the environment in order to discover it. Auctions that allocate these tasks
work on frontiers. Any robot evaluates the frontiers that are auctioned (see
Section 5) and submits bids accordingly. From these evaluations, frontiers
are assigned to the best suited robots. Thanks to the semantic classification
of places it is also possible to cope with the necessity to assigning the same
frontier to more robots, for example when that frontier corresponds to a
corridor that is expected to be connected to a large number of rooms.

– Search for victims. During the exploration, it is possible that an area
that has been sensed by the laser range finders has not been completely
covered by the cameras, due to the different fields of view of the two sensors.
Hence, once an area is mapped, it has to be searched for victims. For this,
we use a second kind of auction, where the tasks are the areas that must
be be searched for victims by using the cameras. The bids for the areas are
calculated according to the following criteria: the size of the area, the battery
level of the robot, and the distance between the robot and the area.

– Park close to victims. The final task is strictly related to the competition
rule that requires to park a robot close to a victim in order to have it scored.
Hence, for every found victim, there is always a corresponding robot with the
task to be parked enough close to the victim at the end of the time allowed in



the competition. In this case, auctions are used to allocate victims to robots
(e.g., based on distance), thus allowing robots that have found victims to
move again around to explore other areas of the environment. The only
constraint is that a robot should be close to the assigned victim at the end
of the competition.

7 Victim Detection

The victim detection module is responsible for searching victims inside the com-
petition environment. It works by analysing images coming from the robots’
cameras and classifying them according to the presence or absence of victims.
In the first case, the victim detection module signals the human operator, who
marks the location of the victim in the map.

We have chosen to implement a skin detector using HSV (Hue, Saturation,
Value) color space, followed by a version of the Viola-Jones algorithm [15], a
well-known image analysis method already used by many teams in previous
editions of the competition. It is based on the value of simple features defined on
the images, allowing object recognition (in this case, skin and facial recognition)
after a training over sample images. The Viola-Jones algorithm uses a cascade of
simple classifiers, each one of them is responsible to analyse a single feature and
decide whether or not the image contains a victim according to that feature. This
approach has been proved to be very fast and to reach high levels of accuracy.
For implementing this module we use components already available through the
OpenCV library framework [16].

8 User Interface

The PoAReT User Interface (UI) allows a single operator to control a relatively
large group of robots in an easy way. It reduces the workload of the operator
and increases her/his situation awareness. These two objectives are reached by
our UI through a mixed-initiative approach [17].

The PoAReT UI allows a single operator to control the system in different
ways (from the most to the least automated):

– It is possible to send high level commands to robots, like “explore along
a direction” or “cover a room”. The system handles autonomously such
commands and behave intelligently to reach the setted goal, exploiting the
semantic map.

– If the system is not able to handle the situation, the operator can take control
of the single robot, controlling it by mean of waypoint targets. With this kind
of approach only the basis of navigation is automated.

– In particularly dangerous or difficult situations, the operator can exclude all
the automated processes and simply teleoperate the robot manually.



This multi-level approach, except the first level, has been previously explored
by [18]. We enhance it with the introduction of high-level commands that limit
the cognitive cost for the operator and exploit the full automation of the system.

The UI is also able to filter notifications arriving from the modules, based
on the operator’s preferences, her/his past behaviour, and situation parameters.
The approach is a simplification of the architecture presented in [19] with the
difference that the PoAReT UI tries to mantain the human operator always
in the control loop, never treating her/him as a simple supervisor in order to
preserve the situation awareness.

Figure 2 shows the UI in action. Clockwise from the top-left of the image:
camera thumbnails (for monitoring and selecting robots), teleoperation com-
mands (for directly controlling the selected robot), information about the se-
lected robot (camera view, battery level, connected robots), interactive map
(used for issuing control actions and integrated with both semantic mapping
and victim detection). Finally, the message manager that shows, sorts, and fil-
ters messages from the robots is displayed at the bottom of the image.

Fig. 2. PoAReT user interface

9 Conclusion

This paper has surveyed the main features of the PoAReT system for the Virtual
Robot competition of the Rescue Simulation League at RoboCup 2012. Among
the most innovative contributions, we remark the building of a geometrical map
based on line segments and the building of a semantic map that can better inform
the exploration and the coordination processes and that can raise the abstraction
level at which human operators give commands to the robotic system. Overall,
our contributions are intended to increase autonomy of robotic systems for rescue
operations.
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